在初中的數(shù)學(xué)學(xué)習(xí)過程中,我們會(huì)發(fā)現(xiàn)數(shù)學(xué)的概念和公式也越來(lái)越多,這些內(nèi)容是在做題過程的內(nèi)容,因此記憶這些內(nèi)容也是數(shù)學(xué)學(xué)習(xí)的關(guān)鍵,但是概念,公式這么多,該如何記憶呢?小編在這里就教教大家數(shù)學(xué)概念到底怎么記!收藏吧!
1.溫故法
不論是皮亞杰還是奧蘇伯爾在概念學(xué)習(xí)理論方面都認(rèn)為概念教學(xué)的起步是在已有的認(rèn)知結(jié)論的基礎(chǔ)上進(jìn)行的。因此,教學(xué)新概念前,如果能對(duì)學(xué)生認(rèn)知結(jié)構(gòu)中原有的概念適當(dāng)作一些結(jié)構(gòu)上的變化,引入新概念,則有利于促進(jìn)新概念的形成。
2.類比法
抓住新舊知識(shí)的本質(zhì)聯(lián)系,有目的、有計(jì)劃地讓學(xué)生將有關(guān)新舊知識(shí)進(jìn)行類比,就能很快地得出新舊知識(shí)在某些屬性上的相同(相似)的結(jié)構(gòu)而引進(jìn)概念。
3.喻理法
為正確理解某一概念,以實(shí)例或生活中的趣事、典故作比喻,引出新概念,謂之喻理導(dǎo)入法。如,學(xué)“用字母表示數(shù)”時(shí),先出示的兩句話:“阿Q和小D在看《W的悲劇》。”、“我在A市S街上遇見一位朋友。”問:這兩個(gè)句子中的字母各表示什么?再出示撲克牌“紅桃A”,要求學(xué)生回答這里的A則表示什么?較后出示等式“0.5×x=3.5”,擦去等號(hào)及3.5,變成“0.5×x”后,問兩道式子里的X各表示什么?根據(jù)學(xué)生的回答,教師結(jié)合板書進(jìn)行小結(jié):字母可以表示人名、地名和數(shù),一個(gè)字母可以表示一個(gè)數(shù),也可以表示數(shù)。這樣,枯燥的概念變得生動(dòng)、有趣,同學(xué)們?cè)谟芍缘南矏傊羞M(jìn)入了“字母表示數(shù)”概念的學(xué)習(xí)。
4.置疑法
通過揭示數(shù)學(xué)自身的矛盾來(lái)引入新概念,以突出引進(jìn)新概念的需要性和合理性,調(diào)動(dòng)了解新概念的強(qiáng)烈動(dòng)機(jī)和愿望。
5.演示法
有些教學(xué)概念,如果把它較本質(zhì)的屬性用恰當(dāng)?shù)膱D形表示出來(lái),把數(shù)與形結(jié)合起來(lái),使感性材料的提供更為豐富,則會(huì)收到良好效果,易于理解和掌握。如,學(xué)“求一個(gè)數(shù)的幾倍是多少”的應(yīng)用題,重要的是建立“倍”的概念。引進(jìn)這個(gè)概念,可出示2只一行的白蝴蝶圖,再2只、2只地出示3個(gè)2只的第二行花蝴蝶圖,結(jié)合演示,通過循序答問,使學(xué)生清晰地認(rèn)識(shí)到:花蝴蝶與白蝴蝶比較,白蝴蝶1個(gè)2只,花蝴蝶是3個(gè)2只;把一個(gè)2只當(dāng)作1份,則白蝴蝶的只數(shù)相當(dāng)于1份,花蝴蝶就有3份。用數(shù)學(xué)上的話說:花蝴蝶與白蝴蝶比,把白蝴蝶當(dāng)作一倍,花蝴蝶的只數(shù)就是白蝴蝶的3倍,這樣,從演示圖形中讓學(xué)生看到從“個(gè)數(shù)”到“份數(shù)”,再引出倍數(shù),很快地觸及了概念的本質(zhì)。
6.問答法
引入概念采用問答式,能在疑、答、辯的過程中,步步探幽,引人入勝。
7.作圖法
用直尺、三角板和圓規(guī)等作圖工具畫出已學(xué)過的圖形,是學(xué)習(xí)幾何的較基本的能力。通過作圖揭示新概念的本質(zhì)屬性,就可以從畫圖引入這些概念。
8.計(jì)算法通過計(jì)算能揭示新概念的本質(zhì)屬性,因此,可以從學(xué)生所迅速的計(jì)算引入新概念,如講“余數(shù)”時(shí),可以讓學(xué)生計(jì)算下列各題:
(1)3個(gè)人吃10個(gè)蘋果,平均每人吃幾個(gè)?
(2)23名同學(xué)植100棵樹,每人平均種幾棵?
學(xué)生能很容易地列出算式,當(dāng)計(jì)算時(shí),見到余下來(lái)的數(shù)會(huì)不知所措,這時(shí)教師再指出:(1)題豎式中余下的“1”;(2)題豎式中余下的“8”,都小于除數(shù),在除法里叫做“余數(shù)”。學(xué)習(xí)新概念的方法很多,但彼此并不是孤立的,就是同一個(gè)內(nèi)容的學(xué)習(xí)方法也沒有固定的模式,有時(shí)需要互相配合才能收到良好的效果,如也可以這樣引入“扇形’概念,讓學(xué)生把課前帶的一把摺扇一折一折地從小到大展開,引導(dǎo)學(xué)生注意觀察,然后概括出:
第一,折扇有一個(gè)固定的軸;
第二,折扇的“骨”等長(zhǎng)。
然后再要求學(xué)生在已知圓內(nèi)作兩條半徑,使它的夾角為20°、40°、120°、……引導(dǎo)學(xué)生觀察所圍成的圖形與剛才展開的折扇有哪些相似之處,較后概括出扇形的意義。數(shù)學(xué)定義學(xué)習(xí)的步驟和方法。